Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 81: 101901, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354854

RESUMO

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ∼28 °C) and room (laboratory) temperature (RT, ∼22 °C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue-specific glucose metabolic index were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (∼50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ∼50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole-body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.


Assuntos
Resistência à Insulina , Insulina , Camundongos , Animais , Insulina/metabolismo , Regulação da Temperatura Corporal , Glucose/metabolismo , Metabolismo Energético/fisiologia , Insulina Regular Humana/metabolismo , Mamíferos/metabolismo
2.
Brain Behav Immun ; 116: 370-384, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38141840

RESUMO

Neuroinflammation and microglial iron load are significant hallmarks found in several neurodegenerative diseases. In in vitro systems, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and it has been shown that iron can augment cellular inflammation, suggesting a feed-forward loop between mechanisms involved in iron import and inflammatory signaling. However, it is not understood how microglial iron import mechanisms contribute to inflammation in vivo, or whether altering a microglial iron-related gene affects the inflammatory response. These studies aimed to determine the effect of knocking down microglial iron import gene Slc11a2 on the inflammatory response in vivo. We generated a novel model of tamoxifen-inducible, microglial-specific Slc11a2 knockdown using Cx3cr1Cre-ERT2 mice. Transgenic male and female mice were administered intraperitoneal saline or lipopolysaccharide (LPS) and assessed for sickness behavior post-injection. Plasma cytokines and microglial bulk RNA sequencing (RNASeq) analyses were performed at 4 h post-LPS, and microglia were collected for gene expression analysis after 24 h. A subset of mice was assessed in a behavioral test battery following LPS-induced sickness recovery. Control male, but not female, mice significantly upregulated microglial Slc11a2 at 4 and 24 h following LPS. In Slc11a2 knockdown mice, we observed an improvement in the acute behavioral sickness response post-LPS in male, but not female, animals. Microglia from male, but not female, knockdown animals exhibited a significant decrease in LPS-provoked pro-inflammatory cytokine expression after 24 h. RNASeq data from male knockdown microglia 4 h post-LPS revealed a robust downregulation in inflammatory genes including Il6, Tnfα, and Il1ß, and an increase in anti-inflammatory and homeostatic markers (e.g., Tgfbr1, Cx3cr1, and Trem2). This corresponded with a profound decrease in plasma pro-inflammatory cytokines 4 h post-LPS. At 4 h, male knockdown microglia also upregulated expression of markers of iron export, iron recycling, and iron homeostasis and decreased iron storage and import genes, along with pro-oxidant markers such as Cybb, Nos2, and Hif1α. Overall, this work elucidates how manipulating a specific gene involved in iron import in microglia alters acute inflammatory signaling and overall cell activation state in male mice. These data highlight a sex-specific link between a microglial iron import gene and the pro-inflammatory response to LPS in vivo, providing further insight into the mechanisms driving neuroinflammatory disease.


Assuntos
Lipopolissacarídeos , Microglia , Animais , Feminino , Masculino , Camundongos , Citocinas/metabolismo , Inflamação/metabolismo , Ferro/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Receptores Imunológicos/metabolismo
3.
Immunohorizons ; 7(12): 842-852, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095595

RESUMO

All cells of the immune system reside in adipose tissue (AT), and increasing type 2 immune cells may be a therapeutic strategy to improve metabolic health. In our previous study using i.p. IL-5 injections to increase eosinophils, we observed that a standard vehicle control of 0.1% BSA also elicited profound AT eosinophilia. In this study, we aimed to determine whether BSA-induced AT eosinophilia results in metabolic benefits in murine models of diet-induced obesity. I.p. 0.1% BSA injections increased AT eosinophils after 4 wk. Despite elevating eosinophils to >50% of immune cells in the AT, body weight and glucose tolerance were not different between groups. Interestingly, BSA elicited epithelial IL-33 production, as well as gene expression for type 2 cytokines and IgE production that were dependent on IL-33. Moreover, multiple models of OVA sensitization also drove AT eosinophilia. Following transplantation of a donor fat pad with BSA-induced eosinophilia, OVA-sensitized recipient mice had higher numbers of bronchoalveolar lavage eosinophils that were recipient derived. Interestingly, lungs of recipient mice contained eosinophils, macrophages, and CD8 T cells from the donor AT. These trafficked similarly from BSA- and non-BSA-treated AT, suggesting even otherwise healthy AT serves as a reservoir of immune cells capable of migrating to the lungs. In conclusion, our studies suggest that i.p. injections of BSA and OVA induce an allergic response in the AT that elicits eosinophil recruitment, which may be an important consideration for those using OVA in animal models of allergic disease.


Assuntos
Eosinofilia , Hipersensibilidade , Camundongos , Animais , Ovalbumina , Soroalbumina Bovina , Interleucina-33 , Tecido Adiposo
4.
Sci Transl Med ; 15(723): eadf9382, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37992150

RESUMO

Obesity-associated inflammation is a systemic process that affects all metabolic organs. Prominent among these is adipose tissue, where cells of the innate and adaptive immune system are markedly changed in obesity, implicating these cells in a range of processes linking immune memory to metabolic regulation. Furthermore, weight loss and weight cycling have unexpected effects on adipose tissue immune populations. Here, we review the current literature on the roles of various immune cells in lean and obese adipose tissue. Within this context, we discuss pharmacological and nonpharmacological approaches to obesity treatment and their impact on systemic inflammation.


Assuntos
Tecido Adiposo , Obesidade , Humanos , Obesidade/complicações , Obesidade/terapia , Tecido Adiposo/metabolismo , Inflamação/metabolismo
5.
6.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014269

RESUMO

Our recent study showed weight cycled mice have increased adipose mast cells compared to obese mice by single cell RNA-sequencing. Here, we aimed to confirm and elucidate these changes. Further analysis of our dataset showed that our initial mast cell cluster could subcluster into two unique populations: one with very high expression of classical mast cell markers and another with elevated lipid handling and antigen presentation genes. This new mast cell cluster accounted for most of the mast cells in the weight cycled group although it was not possible to detect the different populations by new studies with flow cytometry or Toluidine blue staining in mice, possibly due to a downregulation in classical mast cell genes. Interestingly, a pilot study in humans did suggest the existence of two mast cell populations in subcutaneous adipose tissue from obese women that appear similar to the murine populations detected by sequencing; one of which was significantly correlated with weight variance. Together, these data suggest that weight cycling may induce a unique population of mast cells similar to lipid associated macrophages. Future studies will focus on isolation of these cells to better determine their lineage, differentiation, and functional roles.

7.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014310

RESUMO

Mammals are protected from changes in environmental temperature by altering energetic processes that modify heat production. Insulin is the dominant stimulus of glucose uptake and metabolism, which are fundamental for thermogenic processes. The purpose of this work was to determine the interaction of ambient temperature induced changes in energy expenditure (EE) on the insulin sensitivity of glucose fluxes. Short-term and adaptive responses to thermoneutral temperature (TN, ~28°C) and room (laboratory) temperature (RT, ~22°C) were studied in mice. This range of temperature does not cause detectable changes in circulating catecholamines or shivering and postabsorptive glucose homeostasis is maintained. We tested the hypothesis that a decrease in EE that occurs with TN causes insulin resistance and that this reduction in insulin action and EE is reversed upon short term (<12h) transition to RT. Insulin-stimulated glucose disposal (Rd) and tissue specific glucose uptake were assessed combining isotopic tracers with hyperinsulinemic-euglycemic clamps. EE and insulin-stimulated Rd are both decreased (~50%) in TN-adapted vs RT-adapted mice. When RT-adapted mice are switched to TN, EE rapidly decreases and Rd is reduced by ~50%. TN-adapted mice switched to RT exhibit a rapid increase in EE, but whole body insulin-stimulated Rd remains at the low rates of TN-adapted mice. In contrast, whole body glycolytic flux rose with EE. This higher EE occurs without increasing glucose uptake from the blood, but rather by diverting glucose from glucose storage to glycolysis. In addition to adaptations in insulin action, 'insulin-independent' glucose uptake in brown fat is exquisitely sensitive to thermoregulation. These results show that insulin action adjusts to non-stressful changes in ambient temperature to contribute to the support of body temperature homeostasis without compromising glucose homeostasis.

8.
Am J Physiol Endocrinol Metab ; 325(4): E325-E335, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37610411

RESUMO

Complement factor 5 of the innate immune system generates C5a and C5b ligands, which initiate inflammatory and cell lysis events, respectively. C5 activation has been linked with obesity-associated metabolic disorders; however, whether it has a causative role is unclear. We generated a C5 null (C5-/-) mouse using CRISPR-Cas9 gene editing to determine whether loss of C5 improves obesity-linked metabolic dysfunction. Generation of a new mouse model was prompted in part by the observation of off-target gene mutations in commercially available C5-/- lines. Male and female wild-type (WT), heterozygous (Het), and C5-/- mice were fed low-fat diet (LFD) or high-fat diet (HFD) for 22 wk. Body weight gain did not differ between genotypes on LFD or HFD. In lean animals, male C5-/- mice had similar glucose tolerance compared with WT controls; however, in obese conditions, glucose tolerance was worsened in C5-/- compared with controls. In contrast, female mice did not exhibit differences in glucose tolerance between genotypes under either dietary paradigm. Fasting insulin was not different between genotypes, whereas diet-induced obese male C5-/- mice had lower fed insulin concentrations compared with WT controls. No differences in adipose tissue inflammation or adipocyte size were identified between groups. Similarly, susceptibility to fatty liver and hepatic inflammation was similar between WT and C5-/- mice. However, the systemic cytokine response to acute endotoxin exposure was decreased in C5-/- mice. Together, these data suggest that loss of C5 worsens glucose tolerance in obese male but not female mice. Additional work is required to pinpoint the mechanisms by which loss of C5 amplifies glucose intolerance in obesity.NEW & NOTEWORTHY We generated a new mouse model of complement factor 5 deficiency. This work was prompted by a need for improved transgenic mouse lines of C5, due to off-target gene mutations. We find that loss of C5 worsens glucose tolerance in a sex-dependent manner. Though the mechanisms evoking glucose intolerance are not clear, we are confident this model will be useful in interrogating complement activation in obesity-associated diseases.


Assuntos
Intolerância à Glucose , Resistência à Insulina , Masculino , Feminino , Camundongos , Animais , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Fator V , Complemento C5 , Obesidade/genética , Obesidade/metabolismo , Dieta Hiperlipídica , Resistência à Insulina/genética , Inflamação/genética , Inflamação/metabolismo , Camundongos Transgênicos , Proteínas do Sistema Complemento , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos
9.
Cell Rep ; 42(8): 112928, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37542720

RESUMO

Identifying molecular circuits that control adipose tissue macrophage (ATM) function is necessary to understand how ATMs contribute to tissue homeostasis and obesity-induced insulin resistance. In this study, we find that mice with a myeloid-specific knockout of the miR-23-27-24 clusters of microRNAs (miRNAs) gain less weight on a high-fat diet but exhibit worsened glucose and insulin tolerance. Analysis of ATMs from these mice shows selectively reduced numbers and proliferation of a recently reported subset of lipid-associated CD9+Trem2+ ATMs (lipid-associated macrophages [LAMs]). Leveraging the role of miRNAs to control networks of genes, we use RNA sequencing (RNA-seq), functional screens, and biochemical assays to identify candidate target transcripts that regulate proliferation-associated signaling. We determine that miR-23 directly targets the mRNA of Eif4ebp2, a gene that restricts protein synthesis and proliferation in macrophages. Altogether, our study demonstrates that control of proliferation of a protective subset of LAMs by noncoding RNAs contributes to protection against diet-induced obesity metabolic dysfunction.


Assuntos
Resistência à Insulina , MicroRNAs , Camundongos , Animais , Tecido Adiposo/metabolismo , Obesidade/genética , Obesidade/metabolismo , Macrófagos/metabolismo , Resistência à Insulina/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Dieta Hiperlipídica , Lipídeos , Proliferação de Células , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo
10.
Cardiovasc Res ; 119(13): 2312-2328, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37314125

RESUMO

AIMS: Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction, microvascular dysfunction, and myocardial fibrosis with recent evidence implicating the immune system in orchestrating cardiac remodelling. METHODS AND RESULTS: Here, we show the mouse model of deoxycorticosterone acetate (DOCA)-salt hypertension induces key elements of HFpEF, including diastolic dysfunction, exercise intolerance, and pulmonary congestion in the setting of preserved ejection fraction. A modified single-cell sequencing approach, cellular indexing of transcriptomes and epitopes by sequencing, of cardiac immune cells reveals an altered abundance and transcriptional signature in multiple cell types, most notably cardiac macrophages. The DOCA-salt model results in differential expression of several known and novel genes in cardiac macrophages, including up-regulation of Trem2, which has been recently implicated in obesity and atherosclerosis. The role of Trem2 in hypertensive heart failure, however, is unknown. We found that mice with genetic deletion of Trem2 exhibit increased cardiac hypertrophy, diastolic dysfunction, renal injury, and decreased cardiac capillary density after DOCA-salt treatment compared to wild-type controls. Moreover, Trem2-deficient macrophages have impaired expression of pro-angiogenic gene programmes and increased expression of pro-inflammatory cytokines. Furthermore, we found that plasma levels of soluble TREM2 are elevated in DOCA-salt treated mice and humans with heart failure. CONCLUSIONS: Together, our data provide an atlas of immunological alterations that can lead to improved diagnostic and therapeutic strategies for HFpEF. We provide our dataset in an easy to explore and freely accessible web application making it a useful resource for the community. Finally, our results suggest a novel cardioprotective role for Trem2 in hypertensive heart failure.


Assuntos
Cardiomiopatias , Acetato de Desoxicorticosterona , Insuficiência Cardíaca , Hipertensão , Humanos , Camundongos , Animais , Volume Sistólico/fisiologia , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Células Mieloides/metabolismo , Leucócitos/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
11.
J Am Heart Assoc ; 12(4): e027693, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36752232

RESUMO

As the worldwide prevalence of overweight and obesity continues to rise, so too does the urgency to fully understand mediating mechanisms, to discover new targets for safe and effective therapeutic intervention, and to identify biomarkers to track obesity and the success of weight loss interventions. In 2016, the American Heart Association sought applications for a Strategically Focused Research Network (SFRN) on Obesity. In 2017, 4 centers were named, including Johns Hopkins University School of Medicine, New York University Grossman School of Medicine, University of Alabama at Birmingham, and Vanderbilt University Medical Center. These 4 centers were convened to study mechanisms and therapeutic targets in obesity, to train a talented cadre of American Heart Association SFRN-designated fellows, and to initiate and sustain effective and enduring collaborations within the individual centers and throughout the SFRN networks. This review summarizes the central themes, major findings, successful training of highly motivated and productive fellows, and the innovative collaborations and studies forged through this SFRN on Obesity. Leveraging expertise in in vitro and cellular model assays, animal models, and humans, the work of these 4 centers has made a significant impact in the field of obesity, opening doors to important discoveries, and the identification of a future generation of obesity-focused investigators and next-step clinical trials. The creation of the SFRN on Obesity for these 4 centers is but the beginning of innovative science and, importantly, the birth of new collaborations and research partnerships to propel the field forward.


Assuntos
American Heart Association , Sobrepeso , Animais , Humanos , Sobrepeso/epidemiologia , Sobrepeso/terapia , Obesidade/epidemiologia , Obesidade/terapia , Causalidade , New York
12.
Nat Metab ; 4(11): 1434-1435, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36329218
13.
Curr Hypertens Rep ; 24(12): 627-637, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36136214

RESUMO

PURPOSE OF REVIEW: In this review, we focus on immune cell activation in obesity and cardiovascular disease, highlighting specific immune cell microenvironments present in individuals with atherosclerosis, non-ischemic heart disease, hypertension, and infectious diseases. RECENT FINDINGS: Obesity and cardiovascular disease are intimately linked and often characterized by inflammation and a cluster of metabolic complications. Compelling evidence from single-cell analysis suggests that obese adipose tissue is inflammatory and infiltrated by almost all immune cell populations. How this inflammatory tissue state contributes to more systemic conditions such as cardiovascular and infectious disease is less well understood. However, current research suggests that changes in the adipose tissue immune environment impact an individual's ability to combat illnesses such as influenza and SARS-CoV2. Obesity is becoming increasingly prevalent globally and is often associated with type 2 diabetes and heart disease. An increased inflammatory state is a major contributor to this association. Widespread chronic inflammation in these disease states is accompanied by an increase in both innate and adaptive immune cell activation. Acutely, these immune cell changes are beneficial as they sustain homeostasis as inflammation increases. However, persistent inflammation subsequently damages tissues and organs throughout the body. Future studies aimed at understanding the unique immune cell populations in each tissue compartment impacted by obesity may hold potential for therapeutic applications.


Assuntos
COVID-19 , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Cardiopatias , Hipertensão , Humanos , Doenças Cardiovasculares/metabolismo , Diabetes Mellitus Tipo 2/complicações , RNA Viral/metabolismo , Hipertensão/complicações , SARS-CoV-2 , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Inflamação , Cardiopatias/metabolismo
14.
Front Oncol ; 12: 984193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119485

RESUMO

Cancer continues to be a substantial health concern and a leading cause of death in the United States and around the world. Therefore, it is important to continue to explore the potential of novel therapeutic targets and combinatorial therapies. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor of the immunoglobulin superfamily that associates with DNAX activation protein (DAP) 12 and DAP10 to propagate signals within the cell. TREM2 has primarily been recognized for its expression on cells in the monocyte-macrophage lineage, with the majority of work focusing on microglial function in Alzheimer's Disease. However, expansion of TREM2 research into the field of cancer has revealed that epithelial tumor cells as well as intratumoral macrophages and myeloid regulatory cells also express TREM2. In this review, we discuss evidence that TREM2 contributes to tumor suppressing or oncogenic activity when expressed by epithelial tumor cells. In addition, we discuss the immunosuppressive role of TREM2-expressing intratumoral macrophages, and the therapeutic potential of targeting TREM2 in combination with immune checkpoint therapy. Overall, the literature reveals TREM2 could be considered a novel therapeutic target for certain types of cancer.

15.
J Physiol ; 600(20): 4485-4501, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36044273

RESUMO

Triggering receptor expressed on myeloid cells 2 (Trem2) is highly expressed on myeloid cells and is involved in cellular lipid homeostasis and inflammatory processes. Trem2 deletion in mice (Trem2-/- ) evokes adipose tissue dysfunction, but its role in worsening obesity-induced metabolic dysfunction has not been resolved. Here we aimed to determine the causal role of Trem2 in regulating glucose homeostasis and insulin sensitivity in mice. Nine-week-old male and female littermate wild-type (WT) and Trem2-/- mice were fed a low- or high-fat diet for 18 weeks and phenotyped for metabolic function. Diet-induced weight gain was similar between genotypes, irrespective of sex. Consistent with previous reports, we find that loss of Trem2 causes massive adipocyte hypertrophy and an attenuation in the lipid-associated macrophage transcriptional response to obesity. In contrast to published data, we find that loss of Trem2 does not worsen metabolic function in obese mice. No differences in intraperitoneal glucose tolerance (ipGTT), oral GTT or mixed meal substrate control, including postprandial glucose, non-esterified fatty acids, insulin or triglycerides, were found between WT and Trem2-/- animals. Similarly, no phenotypic differences existed when animals were challenged with stressors on metabolic demand (i.e. acute exercise or environmental temperature modulation). Collectively, we report a disassociation between adipose tissue remodelling caused by loss of Trem2 and whole-body metabolic homeostasis in obese mice. The complementary nature of experiments conducted gives credence to the conclusion that loss of Trem2 is unlikely to worsen glucose homeostasis in mice.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Glicoproteínas de Membrana , Receptores Imunológicos , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Éxons , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Insulina/metabolismo , Lipídeos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/genética , Obesidade/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Triglicerídeos/metabolismo
16.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806422

RESUMO

Adipocyte iron overload is a maladaptation associated with obesity and insulin resistance. The objective of the current study was to determine whether and how adipose tissue macrophages (ATMs) regulate adipocyte iron concentrations and whether this is impacted by obesity. Using bone marrow-derived macrophages (BMDMs) polarized to M0, M1, M2, or metabolically activated (MMe) phenotypes, we showed that MMe BMDMs and ATMs from obese mice have reduced expression of several iron-related proteins. Furthermore, the bioenergetic response to iron in obese ATMs was hampered. ATMs from iron-injected lean mice increased their glycolytic and respiratory capacities, thus maintaining metabolic flexibility, while ATMs from obese mice did not. Using an isotope-based system, we found that iron exchange between BMDMs and adipocytes was regulated by macrophage phenotype. At the end of the co-culture, MMe macrophages transferred and received more iron from adipocytes than M0, M1, and M2 macrophages. This culminated in a decrease in total iron in MMe macrophages and an increase in total iron in adipocytes compared with M2 macrophages. Taken together, in the MMe condition, the redistribution of iron is biased toward macrophage iron deficiency and simultaneous adipocyte iron overload. These data suggest that obesity changes the communication of iron between adipocytes and macrophages and that rectifying this iron communication channel may be a novel therapeutic target to alleviate insulin resistance.


Assuntos
Resistência à Insulina , Sobrecarga de Ferro , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Fenótipo
17.
Diabetes ; 71(11): 2313-2330, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35802127

RESUMO

In the setting of obesity and insulin resistance, glycemia is controlled in part by ß-cell compensation and subsequent hyperinsulinemia. Weight loss improves glycemia and decreases hyperinsulinemia, whereas weight cycling worsens glycemic control. The mechanisms responsible for weight cycling-induced deterioration in glucose homeostasis are poorly understood. Thus, we aimed to pinpoint the main regulatory junctions at which weight cycling alters glucose homeostasis in mice. Using in vivo and ex vivo procedures we show that despite having worsened glucose tolerance, weight-cycled mice do not manifest impaired whole-body insulin action. Instead, weight cycling reduces insulin secretory capacity in vivo during clamped hyperglycemia and ex vivo in perifused islets. Islets from weight-cycled mice have reduced expression of factors essential for ß-cell function (Mafa, Pdx1, Nkx6.1, Ucn3) and lower islet insulin content, compared with those from obese mice, suggesting inadequate transcriptional and posttranscriptional response to repeated nutrient overload. Collectively, these data support a model in which pancreatic plasticity is challenged in the face of large fluctuations in body weight resulting in a mismatch between glycemia and insulin secretion in mice.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Secreção de Insulina , Ciclo de Peso , Obesidade/metabolismo , Resistência à Insulina/fisiologia , Glicemia/metabolismo , Dieta , Hiperinsulinismo/metabolismo , Insulina Regular Humana , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo
18.
Compr Physiol ; 12(3): 3641-3663, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35766833

RESUMO

Iron is an essential metal element whose bioavailability is tightly regulated. Under normal conditions, systemic and cellular iron homeostases are synchronized for optimal function, based on the needs of each system. During metabolic dysfunction, this synchrony is lost, and markers of systemic iron homeostasis are no longer coupled to the iron status of key metabolic organs such as the liver and adipose tissue. The effects of dysmetabolic iron overload syndrome in the liver have been tied to hepatic insulin resistance, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis. While the existence of a relationship between iron dysregulation and metabolic dysfunction has long been acknowledged, identifying correlative relationships is complicated by the prognostic reliance on systemic measures of iron homeostasis. What is lacking and perhaps more informative is an understanding of how cellular iron homeostasis changes with metabolic dysfunction. This article explores bidirectional relationships between different proteins involved in iron homeostasis and metabolic dysfunction in the liver. © 2022 American Physiological Society. Compr Physiol 12:3641-3663, 2022.


Assuntos
Sobrecarga de Ferro , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Homeostase , Humanos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Fígado/metabolismo , Síndrome Metabólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
19.
Nat Commun ; 13(1): 2950, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618862

RESUMO

Within adipose tissue (AT), immune cells and parenchymal cells closely interact creating a complex microenvironment. In obesity, immune cell derived inflammation contributes to insulin resistance and glucose intolerance. Diet-induced weight loss improves glucose tolerance; however, weight regain further exacerbates the impairment in glucose homeostasis observed with obesity. To interrogate the immunometabolic adaptations that occur in AT during murine weight loss and weight regain, we utilized cellular indexing of transcriptomes and epitopes by sequencing (CITEseq) in male mice. Obesity-induced imprinting of AT immune cells persisted through weight-loss and progressively worsened with weight regain, ultimately leading to impaired recovery of type 2 regulatory cells, activation of antigen presenting cells, T cell exhaustion, and enhanced lipid handling in macrophages in weight cycled mice. This work provides critical groundwork for understanding the immunological causes of weight cycling-accelerated metabolic disease. For further discovery, we provide an open-access web portal of diet-induced AT immune cell imprinting: https://hastylab.shinyapps.io/MAIseq .


Assuntos
Tecido Adiposo , Redução de Peso , Tecido Adiposo/metabolismo , Animais , Glucose/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Fenótipo , Aumento de Peso
20.
Sci Transl Med ; 14(641): eabm6586, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442705

RESUMO

Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.


Assuntos
Materiais Biocompatíveis , Cicatrização , Animais , Bandagens , Materiais Biocompatíveis/farmacologia , Inflamação , Poliésteres , Espécies Reativas de Oxigênio , Pele , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...